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" ABSTRACT

Fat-trees are a class of routing networks for hardware-efficient parallel
computation. This paper presents a randomized algorithm for routing messages on
a fat-tree. The quality of the algorithm is measured -n terms of the load
factor of a set of messages to be routed, which is a lower bound on the time
required to deliver the messages. We show that if a set of messages has load
factor D = (lg n lg lg n) on a fat-tree with n processors, the number of
delivery cycles (routing attempts) that the algorithm requires is O) with
probability 1-O(1/n). The best previous bound was O(ig n) for the off-line
problem where switch settings can be determined in advance. In a VLSI-like
model where hardware cost is Snja.±Jgwith physical volume, we use the routing
algorithm to demonstrate that fat-trees are universal routing networks in the
sense that any routing network can be efficiently simulated by a fat-tree of
comparable hardware cost. A,
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Fat-trees are a class of routing networks for hardware-
efficient parallel computation. This paper presents a
randomized algorithm for routing messages onl a fat-tree.
The quality of the algorithm is measured in terms of tile
load factor of a set of mnessages to be routed, which is.2ln eS
a lower bound on the tine required to deliver the nmes-
sages. We show that if a set of messages has load factor
A = fl(Ig n Ig Ig n) oil a fat-tree with n processors, the )-/vcesr
number of delivery cycles (routing attempts) that the
algorithm requires is O(A) with probability I - 0(1/n).
The best previous bound was O(A Ig n) for the off-line

problem where switch settings can be determined in ad-
vance. In a VLSI-like model where hardware cost is Figure 1: The organization of a fat-tree. Processors are lo-
equated with physical volume, we use the routing algo- cared at the leaves, and the internal nodes contain concentrator
rithn to demonstrate that fat-trees are universal routing switches. The capacities of channels increase as we go up the tree.
networks in the sense that any routing network can be
efficiently sinulated by a fat-tree of comparable hard-
ware cost. niessages are spontaneously generated by processors.

As is illustrated in Figure 1, a fat-tree is a routing net-

work based oin Leighton's tree-of-meshes graph 17). A setI .Introduction of n processors are located at the leaves of a complete bi-
Fat-trees constitute a class of routing networks for nary tree. Each edge of the underlying tree corresponds
general-purpose parallel computation. This paper pre- to two channels of the fat-tree: one from parent to child,
sents a randomized algorithm for routing a set of nes- the other fron child to parent. Unlike a normal tree in-
sages on a fat-tree. The routing algorithm and its anal- terconnection which is "skinny all over," each channel
ysis generalize all earlier universality result by showing, of a fat-tree consists of a bundle of wires. The number
in a three-dimensional VLSI model, that for a given of wires in a channel c is called its capacity, denoted by
volume of hardware, a fat-tree is nearly the best rout- cap(c). Each internal node of the fat-tree contains cir-
ing network that can be built. This universality result cuitry that switches messages front incoming to outgoing
had been proved only for off-line simulations (81, where channels.

switch settings cali be determined in advance; this pa- The capacities of the channels in a fat-tree determine
per extends it, to the more interesting on-line case, where how much hardware is required to build it, where we

measure hardware ini ternts of three-dimensional volume.
This research was sl)purted in p:Lrt by the Defense Advance. The greater tile capacities of the channels, tile greater
Research Projects Agency under Contract NtO14-80-C-i)622 the Counnulmcatmon potential, and als, the greater time
Ron Greenberg is supported in part by a Fannie and John Hertz Ol e c ap tei a unvra te gr ow
Foundation Fellowship Charles Leiserson is suppurted in par volume. The capacities in a universal fat-tree 181 grow
by an NSF Presidential Young Investigator Award exponentially as we go from leaves to root, where the
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base of the exponential is at most 2. Section 5 shows
that for a given amount of hardware, a universal fat-tree load factor delivery cycles

is nearly the best network that call be built. 0 < A(M) < 1 1

We shall consider communication through tile fat- 1 < A(M) < 2 O(lg n)

tree network to be synchronous, bit serial, and batched. 2 5 A(M) lg n lg lg n O(Ig n lg(A(M)))

By synchronous, we mean that the system is globally lgnlglgn < A(M) poly(n) O(A(M))

clocked. By bit serial, we mean that the messages can
be thought of as bit. streams. Each message snakes its
way through the wires and switches of the fat-tree, with Figure 2: Number of delivery cycles required to deliver a

leading bits of the message setting switches and estab- message set M on a fat-tree with n processors. All bounds are

lishing a path for the remainder to follow. By batched, achieved with probability 1 - 0(1/n) We assume in line 4 that " -

we mean the messages are grouped into delivery cycles, the load factor A(M) is polynomially bounded.

During a delivery cycle, the processors send messages
through the network. Each message attempts to estab- S of wires in R is a (directed) cut if it partitions
Iish a path from its source to its destination. Since some

messages may be unable to establish connections dur- the network into two sets of processors A and

ing a delivery cycle, each successfully delivered message B such that every path from a processor in A

is acknowledged through its communication path at the to a processor in B contains a wire in S. Thecapacity cap(S) is the number of wires in tile .".
end of the cycle. Rather than buffering undelivered mes- c
sages, we simply allow them to try again in a subsequent cut. For a set of messages M, define the load

delivery cycle. The routing algorithm is responsible for a o n u b uof nmessages in M that must cross S. Tile load
grouping the messages into delivery cycles so that all factor of M oinl S is
the messages are delivered in as few cycles as possible.fco fM n i

The mechanics of routing messages in a fat-tree are
ahnost as simple as routing in ani ordiit,,ry tree. For each A(M, S) - ap(S.

cap(S
message, there is a unique path from its source processor
to its destination processor in the underlying complete and the load factor of M on the entire network

*binary tree, which can be specified by a relative address R is
consisting of at most 2 Ig n bits telling whether the ies- A(M) = iax A (M, S) . I
sage turns left or right at. each internal node.

Within each node of the fat-tree, the messages des-
tined for a given output channel are concentrated onto The load factor provides a simple lower bound on the

the available wires of that channel. This concentration ,uMber of delivery cycles required to deliver a set of

may result in "lost" messages if the number of messages messages. When the set of messages is known in ad-

destined for the output channel exceeds the capacity vance, it has been shown [8J that a set M of messages

of the channel. We assume, however, that the comicliI- can be delivered in O(A(M) Ig n) delivery cycles on a fat-

trators within the ntode are ideal in the sense that no tree with n processors. Our routing algorithm, whose

messages are lost if the number of messages destined for running time is suniarized in Figure 2, improves this
a channel is less than or equal to the capacity of the off-line result in two ways. First, the algorithm does . -

channel. Such a concentrator can be built, for example. not need to know the set of messages in advance, but
with a log-depth sorting network ij. A iaore practical can deliver thei on-line. Second, the bounds on run- LL
log-depth circuit can be built by cobining a parallel Iling tinie generally improve (and always at least match)
prefix circuit cGj with a butterfly (a. k. a. FFT, Omega) the previous off-line bound. The only caveat is that our
network, algorithi is randoimized instead of being deterministic,he or but the stated bounds are achieved with high prohabil-

The performance of any rouating .,Igoritlain dlepenids onity
the locality of communication in a set of messages be- ity.

cause some messages may be routed locally within sub- The analysis in terms of load factor is not restricted

trees of the fat-tree without soaking up bandwidth near to permutation routing or situations where each pro .

the root. The locality of communication for a message cessor cali only send or receive a constant ,umber of

set M can be summarized by a measure A(M) called the messages, as is common in the literature. We consider

load factor, which we define in a more general network the general situation where each processor can send and

setting. receive polynomially many messages. Furthermore, we
make no Asumptions about the statistical distribution

Definition: Let R be a ImUnlag network. A set of messages, except insofar as they affect the load factor.

2• . ".
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Our routing algorithm also differs from others in the
*literature in the way rand(omiizationI is used. Unlike tile I sn
* ~algorithms of Valiant 1111, Vlai aI rbe 12, 1 sn

Aleliunas [21, Upfal 1101 and Pippenger 191, for examl- 2 U - M - {messages delivered)
-pie, it does not randomize with respect to paths taken 3 Aguess - 2
* ~~~by messages. Instead, for each dlelivery cycle, each un- 4 wie 1  us <k gnan 0d

delivered message randoinly chooses whether to be sent.
The remainder of this paper is organized as follows. 5 TR Y- G TESS(A guess)

Section 2 describes tile randomized algorithin for rout- 6 A guess - Aguess 4

ing onl fat-trees. Section 3 contains sonme preliminary 7 endwhjle
lemmas needed to analyze the algorithm, andc Section 4
contains the full analysis. Section 5 contains a vani- 8 A guess - (k2 /k1 ) Ig ni Ig Ig n

ety of results that follow from the randomized routing 9 while U $4 0 do
algorithm. It shows how the universality result of 181 10 TR Y-GUESS(A guess)

*can be extended to ont-line simulations, and it includes 1 Ages 2
a modification of the routing algorithm which achieves Agss 2 guess

*better bounds when each channel has capacity 0(ign). 12 endwhile
* It also gives anl existential lower hound for the naive

greedy approach to touting Imessages which shlow., that Figure 3: The randomized algorithm RANDOM for delivering

the greedy strategy is inferior to the randlomiized alga- amnessnge set M on afat-tree with nm processors This algorithm

rithin for worst case inputs. Finmally, Section 6 contains achieves the running times in Figure 2 with high probability if
some concluding remarks, the c ,nstants ki and k2 are appropriately chosen. Since the load

factor A(M) is not known in advance, it is necessary to make

2 The routing algorithni gn. _s, each one being tried out by the subroutine TRY-GUESS.

This section gives at randomnized algorithmn for routing
a set Mf of miessages, which is based onl routing rani-
donm subsets of the Imessages in A!. The algorithiti
RANDOM is shownt in Figure 3, and it uses the sub- procedure TR Y- GI ESS(A guess)

*routine TRY-( 'ESS shown in Figure .1. Section 4 will 1 A - A guess
provide a prooe t hat onl alm n-processor fat-tree, time prob-
ability is at least I -0(1/n) that RANDOM dlelivers 2 wieA>1d
all miessages in M! withini the mmumber of delivery cylces 3 for i - 1 to max {k1 A, k2 Ig n} do
specified by Figure 2, if the two constants k1 and k., 4 independently send each message of U
appearing in the algorithm are properly chosen, with probability 1/rA

Thle basic idea of RANDOM! is to pick a ramidoin sub- 5 It - It - (messages delivered)

set of messages to send in each (delivery cycle by inde- 6 endfor

*pendlently choosing each miessage with sonmc probability 7 A - A/2
p. This idea is sufficieintly imiprtant to mit it formilal 8 edhl

definition. 8 edhl

Deiiin -subzzet of Mf is a stibset of M9 ed1

formed by indepenthently choosing each ines- 10 If~- U1 - (messages delivered)

sageof l wih pobablit p.Figure 4: The stihrowuine TRY-GUESS usled by the algorithm

Wec will show in Section 4 that if p is suifficiently small, RANDOM which tries to deliver the set Ut of currently undelivered
a substantial portion of the messages in a p-subset are meagsWei At)thsteptwlbeucsfl

delivered because t hey eiicounmter no congestitonl dur-ing witlit high probability, if the constants k, anid k2 are appropriately
routing. Onl thle other hiand, if p) is too sumall, few Ines- chosen (The value r is the congestion parameter of the fat-tree
sages are sent. RANDOM varies tlie probability p, fromm detiiied in Section 4. which is typically a small constant ) In that

cycle to cycle, seekiiig randoi subsets of A! whiich coni- czoe, A is always ani upper hund on Ak(C), which is at leas t halved

taiu a shst litial ort on f t ie mssaes i Aliut , eachi iteiritivii of the while loop. When lte loop is finishied,
which do not. cause comugestioti. AL) _ 1. so .111 tile ieiiiaig messages can be sent.

The algorithm RA NDOAI varies the probab~ility p lie-

cause thle load factor A(Mf) is not known. The ovcr-

3
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all structure of RANDOM is to guess the load fac- where c ranges over all channels of the fat-
tor and call tie subroutine TRY-GUESS for each one. tree.

TRY-GUESS determines the probability p based on
RANDOM's guess A guess and a parameter r, called the The next lemma is a "Cliernoff" bound on the tail of a -

congestion parameter, which will be defined in Section 4. binomial distribution. Suppose that we have t indepen-

If Aguess is an upper bound on the true load factor dent Bernoulli trials, each with probability p of success.

A(M), each iteration of the while loop in TRY-GUESS It is well known 151 that the probability that there are

halves Aguess with high probability, as will be shown at least s successes out of the t trials is

in Section 4. When the loop is finished, we have _
A(U) < Aguess < 1, and all the remaining messages B(s,t,p) = k p(l-p~t-
can be delivered in one cycle. The rumber of delivery k=.
cycles performed by TRY-GUESS is O(lg Aguess lg n) The lenmma bounds the probability that the number of
if 2 < Aguess < O(lgn), and the number of cycles is
O(Aguess + Ig n Ig Ig n) if Aguess = fl(lg n). s is l t e i

RANDOM must make judicious guesses for the load Lemma 2
factor because TRY-GUESS may not be effective if
its guess is smaller than the true load factor. Coii- B(s, t,p) < (e-t . I
versely, if the guess is too large, too miany delivery cycles \ s
will be perfornied. Since the amount of work done by

willbe erfrme. Sncetheamont f wrk lon by The final lemmia in this section bounds the probability
TRY-GUESS grows as Ig Aguess for Aguess small, and

that a bounded random variable takes on values sinaller .-as Aguess for Aguess large, there are two main phases than the expectation.
to RANDOM's guessing. (These phases follow the han-
dling of very small load factors, i.e., A(M) < 2.) Lemma 3 Let X < b be a random variable

In the first phase, the guesses are squared from one with expectation y. Then for any w < g, we
trial to the next. Once Aguess is sufficiently large, we have
imove into the second Iphase, and the guesses are doubled
from one trial to the next. In each phase, the niuber Pr {X < } < 1 - to

of delivery cycles run by TRY-GUESS from one call to b - w

the next forms a geometric series. Thus, the work done
in any call to TRY-GUESS is only a constant factor

times all the work done prior to the call. With this RANDOM
guessing strategy, we can deliver a miessage set using This section contains the analysis of RANDOM, the
oinly a constant factor more delivery cycles than would routing algorithm for fat-trees presented in Section 2.
be required if we knew the load factor in advance. We shall show that the probability is 1 - 0(1/n) that

RANDOM delivers a set of M of messages on a univer-
3 Preliminary lemmas sal fat-tree with n processors in the number of delivery
This section containls three lemmas that will be needed cycles given by Figure 2

We begin by analyzing the routing of a p-suiset M'
to analyze the algorithin RANI)OMfrom the preceding of a set M of messages. If the number load(M' c) of
section. The first lemna ,'elates the definit ion of load
factio. gie irst Sein 1 lat the a nti of led miessages in M' that niust pass through c is no more
factor given in Section I to the channel structure of the than the capacity cal)(c), then no messages will be lost
fat-tree. The other two are technical lemnias concerning by concentrating the messages into c. We shall say that
basic probability. One is a conibinatorial bound on the c is congested by M' if load(M', c) - cap(c). We now
tail of the binomial distribution of lie kind attributed to show that the likelihood of liaunel congestion decreasess h o w t li e othe i se ih o o f mhor ee g e ng e s t io d e r e a s ese r
Chernoff [41, and the other is a more geieral, bt weaker, exponentially with channel cal~aity if the probability of
bound on the probability that a random variable takes choosing a given message out of Al is sufficiently small. V
on values smaller than the expectation.

The first lemma states that iii a fat-tree, the load Lemma 4 Let M be a set of messages on a
factor of a set of niessage: is determined by the cuts oil fat-tree, let A(M) be the load factor on the fat-
the channels alone. tree due to M, let M' be a p-subset of messages

Lemma I The lo,id facior of a set ,1 of m. from AM, and let c be a channel through which

sages on a fat-tree is aL given message m E A' must pass. Then
the probability is at most (epA(M)' " that

A(.f) nmax )A(,\f, , channel c is congested by A'.

~...... ...... ..-- -..... ...-. ..- ....... ..... •... . . . . . .



Proof. Channel c is congested by M' if load(M', c) > Proof. The probability that m E M is delivered is at
cap(c). There is already one message from the set M' least the probability that m E M' times the probability
going through channel c, so we must determine a bound that m passes exclusively through uncongested chan-
on the probability that at least cap(c) other messages nels. The probability that m E M' is p, and thus we
go through c. Using Lemma 2 with s = cap(c) and need only show that, given m E M', the probability
t = load(M,c), the probability that the number of rues- is at least I that every channel through which m must
sages sent through channel c is greater than the capacity pass is uncongested. Let cl, c2, cl be the channels in %
cap(c) is less than the fat-tree through which rn must pass. The probabil- ,

ity that channel ck is congested is less than (e/r)caPI '
k I

Bcap(c),loadtM,c),p) < epload(Mc) y"l': by Lemma 4. The probability that at least one of t.he
- cap(c) channels is congested is, therefore, much less than

<5 (ePA (M ))" ("l ) •l " -

The next lemma will analyze the probability that a = r -"
given message of a p-subset of M gets delivered. In or-
der to do the analysis, however, we must select p small by definition of the congestion parameter. Thus, the
enough so that it is likely that the message passes ex- probability that none of the channels are congested is at
clusively through uncongested channels. The choice of least 2. -
p depends on the capacities of channels in the fat-tree. We now focus our attention on RANDOM itself. The
For convenience, we define one parameter of the capaci- next lemma analyzes the innermost loop (lines 3-6) of
ties which will enable us choose a suitable upper bound RANDOMs subroutine TRY-GUESS. At this point in
for p. tli algorithni, there is a set U of undelivered messages

and a value for A. The lemma shows that if A is indeed an
Definition: The congestion parameter r of fat- ,.-per bound on the load factor A(U) of the undelivered
tree is the smallest positive value such that for messages when the loop begins, then \/2 is an upper
each simple path CL, c2 , ... , ci of channels in bound after the loop terminates. This lemma is the
the fat-tree, we have crucial step in showing that RANDOM works.

Lemma 6 Let U be a set of messages on an
r 2 "n-processor fat-tree with congestion parameter

k=l r, and assume A(U) < A. Then after lines 3-

6 of RANDOM's subroutine TRY-GUESS, the
For a fat-tree based on a complete binary tree, the probabdiity is at most O(1/n 2 ) that A(U) > !A.

longest simple path is at most 21gn, where n is the '-
number of processors, and thus r < 4e Ig n. For universal Proof. The idea of the proof is to show that the load
fat-trees, tlie congestion parameter is a constant because factor of all arbitrary channel c remains larger than !I
the capacities of channels grow exponentially as we go with probability Ol/n 3 ). Since the channel c is chosen
up the tree. (All we really need is arithmietic growth arbitrarily out of the 4n - 2 channels in the fat-tree, the
in the channel capacities.) Tme congestion parameter is probability is at most 0(1/n 2 ) that any of the channels
also constant for any fat-tree based on a complete binary is left with load factor larger thaan o e

tree if all tihe clhannels have capacity f2(lg Ig n). The re- For convenience, let C be the subset of messages that
maining analysis treats the congestion parameter r as a imust pass through channel c and are undelivered at
constant, but the analysis does not change substantially the beginning of the innermost loop in RANDOM. Let
for other cases. C,, = C, and for z > 1, let C, C C,_ I denote the set

We now present the lemma that analyzes the proba- of tindelivered messages at the end of the ith iteration
bility that a given message gets delivered, of the loop. Notice that A(C,, c) = IC, I/cap(c), since

IC,j = load(C,,c).
Leinnia 5 Let M be a set of messages on a We now show there exists values for the constants
fat-tree with congestion parameter r, let A(,) k1 and k 2 in line 3 of TRY-GUESS such that for
be the load factor on the fat-tree due to X1, and z = max {k1 A, k, Ig n), the probability is 0(1 /n 3 ) that
let m be an arbitrary message in M. Suppose A(C.,c) > !A, or equivalently, that
M' is a p-subset of M, where p< li/rA(M).
Then if M' is sent, the probability that m gets
delivered is at least 'p. IC:I > Acap(c) • (1)

2

5
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It suffices to prove that the probability is 0(1/n') is at most 1/n'. I
that fewer than 1 iCJ messages from C are delivered Now we cal analyze RANDOM as a whole. a

during the z cycles under the assumption that JC, I>
5Acap(c) for i = 0, 1, ... , z - 1. The intuition behind Theorem 7 For any message set M on an

the assumption JC, > !Acap(c) is that otherwise, the n-processor fat-tree, the probability is at least

load factor oi channel c is already at most 'A at this 1 - O(1/n) that RANDOM will deliver all the

step of the iteration. The reason we need only bound the messages of M within the number of delivery
probability that fewer than ICI messages are delivered cycles specified by Figure 2.

during the z cycles is that inequality (1) implies that Proof. First, we will show that if Aguess > A(M), the
thle number of messages delivered is fewer than C - probability is at most 0(1/n) that the loop in lines 2 ".
iAcap(c) < ICl - . A(C, c~cap~c) < l I~l. through 8 of TRY-GUESS fails to yield A(U) < 1. ni-

We shall establish the 0(1/n 3 ) bound on the prob- n 6
tially, A > A(U), and we know from! Lenina 6 that

ability that at most . ICI messages are delivered il the probability is at most O(1/n 2 ) that any given it-
two steps. For convenience, we shall call a cycle good eration of the loop fails to restore this condition as A
if at least cap(c)/Sr messages are delivered, and bad is halved. Since there re IgAguess iterations of the

otherwise. In the first step, we bound the probabil- loop, we need only make the reasonable assuiption that

ity that a given cycle is bad. Using Lenimna .5 withp = 1/rA < 1/rA(U) < 1/rA(C,) in conjunction with A guess is polynomial in n to obtain a probability of at
most 0(1/n) that A(U) remains greater than 1 after all

the assumption that CJ > iAcap(c), we can conclude the iterations of the loop.
that the expected number of messages delivered in any Now we just need to count the number of delivery cy-
given cycle is greater than 2 - Acap(c) > cap(c)/4r cles which will have been completed by the time we call
Then by Lemma 3, the probability 'hat a a given cycle TRY-GUESS with a Aguess such that A(M) S Aguess.
is bad is at most 1 - 1/(8r - 1) < 1 - 1/8r. (Although Let us denote by A* the first Aguess which satisfiesthis~~L e boun isot byff c e l stroeng th e first.- outs the ritch guessie
this bound is sufficiently strong to piY:e our theoretical this condition, and then break the analysis down into
results, it is weak because the probability that a message
is delivered in a given cycle is not independent from the cases according to the value of A(M).

For A(M) _< 1, we do not actually even call
probabilities for other messages, and thus we iust rely TRY-GUESS. We need only count the one delivery cycle
on tihe bound given by Lemnnia 3. In practice, one would executed in line I of RANDOM.
anticipate that the dependencies are weak, and that the For < A(M) 2, we need add only the kM .g n cycles
algorithm would be effective with much smaller values
for the constants k1 and k, than w can prove here.) exected when we call TRY-GUESS(2}.

Th tFor 2 < A(M) < (k_/k 1 ) Ig n, the number of deliv-
e shery cycles involved in each execution of TRY-GUESS

stantial fraction of tile z delivery cycles are bad. Specif- is Olg A yuessk2 Ig n), since we perform O(lg Aguess) it
ically, we show that the probability is 1 - 0(1/n 3

) that erations of the loop in lines 2-8 of TRY-GUESS, each
at least some small constant fraction q of tIhe z cycles are containing k2 Ig n iterations of the loop in lines 3-6. The
good. By picking k1 = 4r/q, which implies z > 4rAiq, value of A iuess is at most A(M) 2 , so the total number
at least qzcap(c)/Sr > 1 JC) messages will be delivered, of elivery cycles is
We bound the probability that at least (1 - q)z of tile z

cycles are bad by using a counting argument. There are O(Ig n Ig A(M) 2 ) + O(ig n Ig A(M)) + O(Ig n Ig V A-(M))

(I I-oIz) ways of picking the bad cycles, and the proba-
bility that a cycle is bad is at most I - 1/8r. Thus, the -1O(lg nig 'A(M)) +. + O(lgn)
probability that at most 1 JCJ messages are delivered is = O(Ig n lg(A(M)2''))

0!<:I1+hrK h AIM)

Pr { < Cl messages delive, ed} = 0O2' - ' Ig n Ig(A(M)))

Y )) - - Ogmlg A(M))-5 1o -,Z (Iq ).
/ I j\I -,/IZ sinc the series is geometric.

< (q'(l )-' 1 -r For A(M) > (k,/lk) Ig n, the number of delivery cy-

_< 2 -/ cles executed by the time we reach line 8 of RANDOM is
O(Ig n Ig Ig n) according to tile preceding analysis, and

if we choose q = l/e 4r In r, as tile reader may verify. then we must continue in the quest to reach Alques s .
Since z = nax (kl A, k., Ig n), if we choose k, = 36r, the If A(M) < (k.,/ki) Ig n Ig Ig n, then we need only add
prohability that fewer thani t JC, messages are delivered the 111nuiber of delivery cycles involved in the single call

. -o.°. -.-- "
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TRY-GUESS((k 2 /k1 ) Ig n lg lg n). This additional nun- Theorem 8 Let FT be a universal fat-tree of
ber of delivery cycles is also O(lg n Ig Ig n), which is volume v on a set of n processors, and let R "-

O(lgnIg X(M)). be an arbitrary routing network also of vol-

If A(M) > (k 2/ki) lgnlglgn, the number of delivery ume v on a set of n processors. Then there

cycles executed before reaching line 8 is O(lg n Ig Ig n) as is an identtficatton of processors in FT with . -

before, which is O(A(M)). We must then add O(Aguess) the processors of R with the following prop-
cycles for each call of TRY-GUESS in line 10. Since erty. Any message set M that can be delivered

A'uess is at most 2A(M), the total additional number in time t by R can be delivered by FT in time

of delivery cycles is O((t+lg Ig g3 n) with probability 1-O(1/n).

O(2A(M)) + O(A(M)) + O(A(M)/2) + Sketch of proof. The proof follows that of [81. The reader

+O(lg n lg Ig n) is referred to that paper for details. The routing network
R of volume v is mapped to FT in such a way that any

= . O(2'-'A(M)) message set M that can be delivered :n time t by R
o<i<t puts a load factor of at most 0(tlg(n/v 2/3)) on FT.
O(A(M)) By Theorem 7, the message set M can be delivered by l

where t = 1 + lg(kjA( M)/k 2 lg n Ig lg n). The total u- RANDOMin O(t lg(n/v 2/ 3 ) + Ig n Ig Ig n) delivery cycles

ber of delivery cycles is thus O(A(M)). [ with high probability. Since each delivery cycle takes at
most O(lg 2 n) time, the result follows. IThe I - 0(/n) bound onf the probability that Remark. The delivery cycle time of the off-line fat- ...

RANDOM delivers all the messages can be improved - "
to 1 - O(1/nk) for any constant k by choosing k2 = trees presented in (81 is e(lg n). The on-line fat-trees

described in Section I have a basic delivery cycle time
12(k + 2)r, or by simply running the algorithm through of 9(lg 2 n) because the concentrator switches have log-
more choices of A guess. arithmic depth. We have discovered a simpler on-line

We can also use RANDOM to obtain a routing al- fat-tree with delivery cycle time of e(lg n), but unfor-
gorithm which guarantees to deliver all the messages tunately, the number of delivery cycles required by a
in finite tine with expected number of delivery cycles RANDOM-like algorithm is increased by a factor of lg n.
given in Figure 2. We simply interleave RANDOM with It seems reasonable to look for fat-tree structures which
any routing strategy that guarantees to deliver at leastaysave the factor of lg-n in delivery cycle time without --
one message in each delivery cycle. If the number of displacing it elsewhere.
messages is bounded by some polynomial nk, then we d.t w

choose k2 such that RANDOM works with probability
I - O(1/nk). Off-line routing

Our analysis for RANDOM has repercussions for the

5 Further results off-line routing case. Since we have shown that with
high probability, the number of delivery cycles given by

This section contains additional results relvant to rout- Figure 2 suffices to deliver a message set with load factor
ing onf fat-trees. We first present an improved version A, there must exist off-line schedules usng this many """

of the universality theorem from 181. Then we give two delivery cycles, which improves the bound of O(A Ig n)

results on fat-tree routing that follow from the analysis given in 18]. The previous off-line bound was proved by
of RANDOM. Finally, we show that there are message deterministically constructing a routing schedule that
sets on which a greedy routing strategy fails to work achieves tihe bound. Our better bound does not yield a
well. deterministic construction of the routing schedule, but

it does -ield a probabilistic one.

Universality

The performance of the routing algorithml RANDO.MI Larger channel capacities

allows us to generalize the universality theorem from 18], We can improve the results for on-line routing if each
which states that a universal fat-tree of a given volume channel c in the fat-tree is sufficiently large, that is if
can simulate any other routing network of equal volume cap(c) = fl(Ig n) Specifically, we can deliver a message
with only a polylog factor increase in the time required. set M if' O(A(M)) delivery cycles with high probability,
The original proof assumed the simulation of the routing i.e., we can meet the lower bound to within a constant
was off-line. Our results show that the simulation can factor. The better bound is achieved by the algorithm
be carried out in the more interesting on-line context. RANDOI-2 shown in Figure 5.

7.]
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SZ.-1 1 while MAOdo

2 'while M # 0 do 2 send M

3 for each message m C M, choose a random 3 M - M - {messages delivered}
number t ,,, E { 1,2 ... z 4 endwhile

4 fori- Ito zdo
5 send all inessages m such that i,, = i Figure 6: Algorithm GREEDY for delivering a message set

6 endfor M.

7 z - 2z
8 endwhile well as RANDOM. Specifically, for any A > 1, there

is a message st, with load factor A which causes the

Figure 5: Algorithm RANDOM-2for routing in a fat-tree with greedy strategy to take O(A Ig n) delivery cycles on an "

channels of capacity f(lgn). n-processor fat-tree. This lower-bound result is based
on all idea originally due to Miller Maley of MIT.

Figure 5 shows the greedy algorithin. The code for
Theorem 9 For any message set M on an GREEDY does not completely specify the behavior of
n-processor fat-tree with channels of capacity message routing on a fat-tree because the switches have
O(lgn), the probability is at least 1 - 0(1/n) a choice as, to which mnessage's to drop when there is
that RANDOM-2 will deliver a!l the messages congestion. (The processors also have this choice, but
of M in 0(A(M)) delivery cycles, if A(M) is we shall think of then as being switches as well.) In
polynomially bounded. the analysis of RANDOM, we could presume that all

Proof. Let the lower bound onl channel size be a ig n, and messages in a channel were lost if the channel was con-
Petro et te polyoer bound on an ie bd fatr g n .a gested. To completely specify the behavior of GREED Y,
let n' be the polynomial bound on the load factor \(M). we must define the behavior of switches when channels
We consider only the pass of the algorithm when z first a "
exceeds e2Ik+ :/LA(M). We ignore previous cycles for are congested.
the analysis of message routing, except to note that the The lower bound for GREED Ycovers a wide range of
number of delivery cycles they require is O(A(M)). switch behaviors. Specifically, we assume the switches

We first consider a single channel c within a single have the following properties.

cycle z from among the z delivery cycles in the pass. 1. Each switch is greedy in that it only drops messages
Since each timessage has probability I/z of being sent in if a channel is congested, and then only the mini-
cycle z, we can apply Lenia 4 with p = 1/z to conclude mumn number necessary.
that the probability that channel c is congested in cyclei is at mnost 2. Each switch is oblivious in that decisions on which

messages to drop are not based oil any knowledge of
e M 2 .,,.the message set other than the presence or absence

Z - of messages ol the switch's input lines.

< 2k +211 K We define the switches of a fat-tree to be admissible if
1 they have these two properties. The conditions are satis-

*k  fled, for example, by switches that drop excess messages L

Since there are O(n) channels, the probability that there at randomu, or by switches that favor one input channel -

exists a conigested chtannel in cycle i is O(ln"±). Fi- over another. An admissible switch call even base de-nsally, since there are z _ 2e21 +Zt/"A(M) = OiAsI)) = cisions on its previous decisions, but it cannot predict

O(n ) cycles, the probability is 0, I/n) that there exists the future or make decisions based on knowing what (or

a congested channel in any delivery cycle of the pass. 3 how many) iessages it or other switches have dropped.

Theorem 10 (onsider an n-processor fat-tree
Greedy strategies with admissable switches, where the channelcapacities grow at a rate ct in the rangeI<We have shown that there are no message sets on which apa2Ten frow ay A rt 1 thee rnge a

RANDOM fails to work well. It is natural to wonder $age set with load factor A on which GREEDY .- "
whether a simple greedy strategy of sending all nudeliv- requires 11(A Ig n) devery cycles. ih RE
ered messages oii each delivery cycle, and letting them rg d c
battle their ways through the switches, Inighlt be as ef- Sketch of proof. We use all adversary argument and con-
fective. We caii show that no greedy strategy works as structs a message set in which all messages are directed

8
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